Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards.
نویسنده
چکیده
Transposable elements (TEs) are DNA sequences that can insert elsewhere in the genome and modify genome structure and gene regulation. The role of TEs in evolution is contentious. One hypothesis posits that TE activity generates genomic incompatibilities that can cause reproductive isolation between incipient species. This predicts that TEs will accumulate during speciation events. Here, I tested the prediction that extant lineages with a relatively high rate of speciation have a high number of TEs in their genomes. I sequenced and analysed the TE content of a marker genomic region (Hox clusters) in Anolis lizards, a classic case of an adaptive radiation. Unlike other vertebrates, including closely related lizards, Anolis lizards have high numbers of TEs in their Hox clusters, genomic regions that regulate development of the morphological adaptations that characterize habitat specialists in these lizards. Following a burst of TE activity in the lineage leading to extant Anolis, TEs have continued to accumulate during or after speciation events, resulting in a positive relationship between TE density and lineage speciation rate. These results are consistent with the prediction that TE activity contributes to adaptive radiation by promoting speciation. Although there was no evidence that TE density per se is associated with ecological morphology, the activity of TEs in Hox clusters could have been a rich source for phenotypic variation that may have facilitated the rapid parallel morphological adaptation to microhabitats seen in extant Anolis lizards.
منابع مشابه
Hox cluster duplications and the opportunity for evolutionary novelties.
Hox genes play a key role in animal body plan development. These genes tend to occur in tightly linked clusters in the genome. Vertebrates and invertebrates differ in their Hox cluster number, with vertebrates having multiple clusters and invertebrates usually having only one. Recent evidence shows that vertebrate Hox clusters are structurally more constrained than invertebrate Hox clusters; th...
متن کاملAtypical relaxation of structural constraints in Hox gene clusters of the green anole lizard.
Hox genes control many aspects of embryonic development in metazoans. Previous analyses of this gene family revealed a surprising diversity in terms of gene number and organization between various animal species. In vertebrates, Hox genes are grouped into tightly organized clusters, claimed to be devoid of repetitive sequences. Here, we report the genomic organization of the four Hox loci prese...
متن کاملExploiting genomic resources in studies of speciation and adaptive radiation of lizards in the genus Anolis.
Lizards in the genus Anolis have radiated extensively within and among islands in the Caribbean. Here, I provide a prospectus for identifying genes underlying adaptive phenotypic traits in anoles. First I review patterns of diversification in Anolis and the important morphological axes along which divergence occurs. Then I discuss two features of anole diversification, the repeated, convergent ...
متن کاملElephant shark (Callorhinchus milii) provides insights into the evolution of Hox gene clusters in gnathostomes.
We have sequenced and analyzed Hox gene clusters from elephant shark, a holocephalian cartilaginous fish. Elephant shark possesses 4 Hox clusters with 45 Hox genes that include orthologs for a higher number of ancient gnathostome Hox genes than the 4 clusters in tetrapods and the supernumerary clusters in teleost fishes. Phylogenetic analysis of elephant shark Hox genes from 7 paralogous groups...
متن کاملTesting the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards.
Many of the classic examples of adaptive radiation, including Caribbean Anolis lizards, are found on islands. However, Anolis also exhibits substantial species richness and ecomorphological disparity on mainland Central and South America. We compared patterns and rates of morphological evolution to investigate whether, in fact, island Anolis are exceptionally diverse relative to their mainland ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 283 1840 شماره
صفحات -
تاریخ انتشار 2016